
An equational presentation of the local state
monad

Kenji Maillard

September 21, 2015

Algebraic theories

An algebraic theory (aka abstract clone, lawvere theory) is a set of
operations of finite arity containing projections and stable by
composition.

A generic n-ary operation will be noted

op : [n] −→ [1]

Most of the time, algebraic theories are presented by an equational
theory over some signature. In that case, the algebraic theory itself
correspond to the terms over that signature modulo the equations.

Examples of algebraic theories

I Non-deterministics computations

∨ : [2]→ [1] commutative, associative, idempotent

I Input-output with input language ΣI and output language ΣO

in : [nI]→ [1] where nI = |ΣI |
outc : [1]→ [1] where c ∈ ΣO

I Probabilistic computations

Counter-example : The continuation monad

A 7−→ (A⇒ R)⇒ R

is not finitary, hence can not be presented by an algebraic theory

The theory of global state : Operations

Let V be a fixed finite set of values and n = Card(V).
For all the diagrams, V = {true, false}.

The theory contains a binary operation and n unary operations for
each val ∈ V

lookup : [n]→ [1] updateval : [1]→ [1]

false

true

The theory of global state : Equations (1)

. . . subject to the following equations :

updatewal ◦ updateval = updateval

=val wal val

lookup ◦
∏
v∈V

updatev ◦ δ = id

x

x

true

false

= x

The theory of global state : Equations (2)

As well as this one :

updateval ◦ lookup = updateval ◦ πval

x

y

true =

x

true

x

y

false =

y

false

Working on multiple cells

If we want to work with a fixed number k of cells we can :

I Change the set of value V and set

Ṽ = V k

I Apply k times a state transformer

It was shown by Hyland, Plotkin and Power that the two coincides
and can be derived from an operation ⊗ on algebraic theories.

Working on multiple cells diagrammatically

We index each operation by the cell loc on which it operates :

lookuploc : [n]→ [1]

3

3

3
2

2

2
1

1

1

updateloc,val : [1]→ [1]

1 1
2 2
3 3val

Local state : enabling allocation and deallocation

We want to add operations

allocloc : [1]→ [1] deallocloc : [1]→ [1]

morally giving and restraining access to a new cell at a fresh
location loc

Of course, we want to forbid the following code

let l = alloc in
let () = dealloc l in
lookup l

In order to do so, we need to track the allocated locations.

State-indexed types

We assume an infinite family of sorts :

〈0〉 〈1〉 〈2〉 . . . 〈p〉 . . .

which will index our types.

We can now think of a type A as a family

A〈0〉 A〈1〉 A〈2〉 . . . A〈n〉 . . .

where A〈p〉 is the type of terms knowing that there are exactly p
memory locations allocated.

Coercions between state-index
Not only do we want to know how many cells were allocated, but
we also want to track the lifetime of each memory cell.

We introduce coercions between sorts :

f : 〈p〉 B 〈q〉

I We want a coercion 〈p〉B 〈p〉 for each permutation of the
memory space

I We also want to track the modifications when going from one
sort to another

〈p〉B 〈p + 1〉

Definition
A coercion f : 〈p〉B 〈q〉 is an injection

f : [p] ↪→ [q]

State-indexed types : examples

I The type Bool of booleans

Bool〈p〉 = {true, false} Bool〈f 〉 = id : Bool〈p〉 → Bool〈q〉

I The type Loc of locations

Loc〈p〉 = {1, . . . , p} Loc〈f 〉 = f : Loc〈p〉 → Loc〈q〉

I The product A× B of two indexed types A and B

(A× B)〈p〉 = A〈p〉 × B〈p〉 (A× B)〈f 〉 = A〈f 〉 × B〈f 〉

I The function space A⇒ B between two indexed types

(A⇒ B)〈p〉 = A× Y(p)→ B

where Y(p)〈q〉 = {f : 〈p〉B 〈q〉}

The legacy local state monad

Given such an indexed-type A, Plotkin and Power explain that we
can compute the local state monad T as follows :

(T A)〈p〉 = V p ⇒
∫ q∈Inj

A〈q〉 × V q × Inj(p, q)

Regrettably the understanding of this formula seems to be reserved
to a handful of caterrorists.

An introduction to theories over the arity ΣInjop

The relevant notion of “algebraic theory” for our setting is called a
theory with arity (c.f. Weber, Clemens, Melliès).

When comparing to the traditional case :
I it is multi-sorted with an infinite family 〈p〉 of sorts
I it contains at least the coercions f : 〈p〉B 〈q〉
I but the restriction to a specific sort 〈p〉 should be an algebraic

theory

The operations are then of the form

〈p1〉+ . . .+ 〈pk〉 −→ 〈q〉

that is an operation takes as input a finite number of arguments of
eventually distinct sorts and returns an ouput at any sort.

A presentation of the local state monad

All the content that follows is taken from Melliès’14.
The presentation can be logically divided as follows :

I For each sort 〈p〉, we need the operations for manipulating p
memory cells

I We need operations of allocation and deallocation that move
from a sort 〈p〉 to another sort 〈q〉

I We then have to explain how the two different group of
operations interact

Operations manipulating p memory cells

We get back our old friends from the algebraic theory of global
state :

lookuploc : 〈p〉+ . . .+ 〈p〉︸ ︷︷ ︸
n times

→ 〈p〉

3

3

3
2

2

2
1

1

1

updateloc,val : 〈p〉 → 〈p〉

1 1
2 2
3 3val

Deallocation & permutation

Let p > 0 and loc, loc ′ ∈ {1, . . . , p}, then we have

permuteloc,loc ′ : 〈p〉 → 〈p〉 deallocloc : 〈p〉 → 〈p + 1〉

Here on the diagrams, we are at sort 〈3〉, loc = 3 and loc ′ = 2.

The coercions are in fact exactly the terms derived from these two
families of operations.

Allocation

Suppose p > 0, loc ∈ {1, . . . , p} and val ∈ V , then we have :

allocloc,val : 〈p + 1〉 −→ 〈p〉

val

Equations for Block

dealloc-alloc

val
=

permute-alloc

val
= val

Plus the equations for commutations when the operations are not
on the same locations.

Equations for the distributive law

We now consider some equations involving a lookup or update
with a Block operation :

valwal
=

wal

=

Going back to the local state monad

Now that we have a presentation of the monad, we can try to have
a new understanding of its formula.

(T A)〈p〉 = V p ⇒
(
V p ×

∫ q,r∈Inj
A〈q〉 × Inj(q, p + r)× V r

)

Indeed (TA)〈p〉 is the set of syntactical trees over the operations
with root at sort 〈p〉 and leaves in A modulo the equations.

The normal forms can be understood as the following process

reading � writing � deallocating & permuting � allocating

The Block and the distributive law

The previous formula can be decomposed as T = F ◦ B with :

(FA)〈p〉 = V p → A〈p〉 × V p

and

(BA)〈p〉 =

∫ q,r∈Inj
A〈q〉 × Inj(q, p + r)× V r

They are then recombined via a distributive law :

λ : B ◦ F −→ F ◦ B

A more modular presentation, but can we go further ?

Partial injections and rewriting

A partial injection from [n] to [m] is a pair

〈p, f 〉 : [n] −→ [m]

p ∈ N f : [n] ↪→ [m + p]

A rewriting between partial injections

α : 〈p, f 〉 −→ 〈q, g〉

is an injection

α : [q] −→ [p] such that f = (idm + α) ◦ g

Diagrammatic rewriting : deallocation vs. allocation

Diagrammatic rewriting : permutation vs. allocation

A 2-dimensional algebraic theory for block

Now we can associate :
I To each natural number n ∈ N the monad

A 7−→ Sn ⇒ A× Sn

I To each partial injection 〈r , f 〉 the monad transformer

applying r times the state monad transformer
then forgetting and permuting cells according to f

I To each rewriting path α between two partial injections a
parametric function “optimising” the source monad
transformers to the target monad transformers

Theorem
This 2-dimensional presentation captures exactly the algebras of the
local state monad.

What we got until now
I A good understanding of an equational presentation of the

monad of local state
I A tentative implementation of the local state monad in Ocaml
I A cute little categorical theorem about fibrations of monads

× × × ×

∗

∗
∗

∗

What’s next ?

I Which programming language am I talking about ?
I How comes that the categorical description of operation is

naturally in continuation passing style ?
I The monad transformer analogy is still a little too handwaving
I What is the relation to kleisli structures aka. relative monads ?

Questions ? . . . Answers ?

	Monads and Programming languages
	Algebraic theories
	Local state

