
Principles of Program Verification for
Arbitrary Monadic Effects

Kenji Maillard
advised by Cătălin Hrit,cu

ENS & Inria Paris, team Prosecco

PhD defense
Monday the 25th of November, 2019

1The ”Programs as Recipes” paradigm

� A program is a sequence of instructions

� A computer evaluates a program in a
similar way a cook realizes a recipe,
by executing each steps at a time

How to make sure that the program achieve some properties ?

1The ”Programs as Recipes” paradigm

� A program is a sequence of instructions

� A computer evaluates a program in a
similar way a cook realizes a recipe,
by executing each steps at a time

How to make sure that the program achieve some properties ?

1The ”Programs as Recipes” paradigm

� A program is a sequence of instructions

� A computer evaluates a program in a
similar way a cook realizes a recipe,
by executing each steps at a time

How to make sure that the program achieve some properties ?

2Program verification: what’s my program doing?

Formal specification
A logical formula describing the action of my program

Given a natural number n, compute the nth Fibonnacci number

Formal verification
Proving that a program validates a given specification.

2Program verification: what’s my program doing?

Formal specification
A logical formula describing the action of my program

Given a natural number n, compute the nth Fibonnacci number

Formal verification
Proving that a program validates a given specification.

let rec fibonacci n =

if n = 0 ‖ n = 1 then 1

else fibonacci (n-1) + fibonacci (n-2)

2Program verification: what’s my program doing?

Formal specification
A logical formula describing the action of my program

Given a natural number n, compute the nth Fibonnacci number

Formal verification
Proving that a program validates a given specification.

val fibonacci : N→N
let rec fibonacci n =

if n = 0 ‖ n = 1 then 1

else fibonacci (n-1) + fibonacci (n-2)

2Program verification: what’s my program doing?

Formal specification
A logical formula describing the action of my program

Given a natural number n, compute the nth Fibonnacci number

Formal verification
Proving that a program validates a given specification.

val fibonacci : n:Z→ Pure Z
(requires)

(ensures)

let rec fibonacci n =

if n = 0 ‖ n = 1 then 1

else fibonacci (n-1) + fibonacci (n-2)

2Program verification: what’s my program doing?

Formal specification
A logical formula describing the action of my program

Given a natural number n, compute the nth Fibonnacci number

Formal verification
Proving that a program validates a given specification.

val fibonacci : n:Z→ Pure Z
(requires (n ≥ 0))

(ensures (λ r→ r ≥ max 1 n))

let rec fibonacci n =

if n = 0 ‖ n = 1 then 1

else fibonacci (n-1) + fibonacci (n-2)

3Programs & Side-effects

Beyond computing pure mathematical functions, programs can

I Read a password from the keyboard

I Send meta-data to a remote server

I Store temporary or persistent data

I Raise signals or exceptions,
break control flow

I Flip a coin randomly

I Pick an element of a list
non-deterministically

; Use monads to represent side-effects uniformly!

3Programs & Side-effects

Beyond computing pure mathematical functions, programs can

I Read a password from the keyboard

I Send meta-data to a remote server

I Store temporary or persistent data

I Raise signals or exceptions,
break control flow

I Flip a coin randomly

I Pick an element of a list
non-deterministically

; Use monads to represent side-effects uniformly!

4Monadic effects [Moggi ‘89]

MX represents a computational context producing values in X

A monad M : Type→ Type comes with operations and laws:

retM : X →MX bindM :MX → (X →MY)→MY

Examples of computational monads:

B State state passing computations St(X) = S → X × S
B Exceptions Exc(X) = X + E
B Non-determinism finite sets of results NDet(X) = Pfin(X)

B Continuations ContA(X) = (X→A)→A

Also interactive IO, probabilities. . .

4Monadic effects [Moggi ‘89]

MX represents a computational context producing values in X

A monad M : Type→ Type comes with operations and laws:

retM : X →MX bindM :MX → (X →MY)→MY

Examples of computational monads:

B State state passing computations St(X) = S → X × S
B Exceptions Exc(X) = X + E
B Non-determinism finite sets of results NDet(X) = Pfin(X)

B Continuations ContA(X) = (X→A)→A

Also interactive IO, probabilities. . .

5Verifying monadic programs?

� Many tools for program verification

Hoare logics Separation logics . . .

� Often effect-specific

State + Exceptions State + Probabilities

I Distil the common ideas underlying most of these tools

Unifying principles for reasoning with arbitrary monadic effects

5Verifying monadic programs?

� Many tools for program verification

Hoare logics Separation logics . . .

� Often effect-specific

State + Exceptions State + Probabilities

I Distil the common ideas underlying most of these tools

Unifying principles for reasoning with arbitrary monadic effects

5Verifying monadic programs?

� Many tools for program verification

Hoare logics Separation logics . . .

� Often effect-specific

State + Exceptions State + Probabilities

I Distil the common ideas underlying most of these tools

Unifying principles for reasoning with arbitrary monadic effects

5Verifying monadic programs?

� Many tools for program verification

Hoare logics Separation logics . . .

� Often effect-specific

State + Exceptions State + Probabilities

I Distil the common ideas underlying most of these tools

Unifying principles for reasoning with arbitrary monadic effects

Roadmap

Motivation

Specifying Monadic Programs

Verification: Dijkstra Monads

Towards Relational Verification

A Unifying Categorical Framework

6Weakest preconditions as specifications

Hoare logic [‘69]: specifying (stateful) code with predicates

{ pre } code { post }

Dijkstra’s insight [‘75]: a weakest precondition wp[c] can be
computed compositionally from a program and a postcondition

` {P } c {Q } ⇐⇒ ` P ⇒ wp[c](Q)

Pure: wp[c] : (X → P)→ P

Stateful: wp[c] : (X × S → P)→ S → P

With exceptions: wp[c] : (X + E → P)→ P

6Weakest preconditions as specifications

Hoare logic [‘69]: specifying (stateful) code with predicates

{ pre } code { post }

Dijkstra’s insight [‘75]: a weakest precondition wp[c] can be
computed compositionally from a program and a postcondition

` {P } c {Q } ⇐⇒ ` P ⇒ wp[c](Q)

Pure: wp[c] : (X → P)→ P

Stateful: wp[c] : (X × S → P)→ S → P

With exceptions: wp[c] : (X + E → P)→ P

6Weakest preconditions as specifications

Hoare logic [‘69]: specifying (stateful) code with predicates

{ pre } code { post }

Dijkstra’s insight [‘75]: a weakest precondition wp[c] can be
computed compositionally from a program and a postcondition

` {P } c {Q } ⇐⇒ ` P ⇒ wp[c](Q)

Pure: wp[c] : (X → P)→ P

Stateful: wp[c] : (X × S → P)→ S → P

With exceptions: wp[c] : (X + E → P)→ P

7Weakest preconditions as monads!

Pure: WIdX = ContP(X) = (X → P)→ P

Continuation monad with answer type P.

retW
Id

: X→WIdX bindW
Id

: WIdX→(X→WIdY)→WIdY

retW
Id
x Q = Q(x) bindW

Id
w1 w2 Q = w1(λx .w2(x)(Q))

Also monads:

Stateful: WSt X = (X × S → P)→ S → P

With exceptions: WExc X = (X + E → P)→ P

7Weakest preconditions as monads!

Pure: WIdX = ContP(X) = (X → P)→ P

Continuation monad with answer type P.

retW
Id

: X→WIdX bindW
Id

: WIdX→(X→WIdY)→WIdY

retW
Id
x Q = Q(x) bindW

Id
w1 w2 Q = w1(λx .w2(x)(Q))

Also monads:

Stateful: WSt X = (X × S → P)→ S → P

With exceptions: WExc X = (X + E → P)→ P

7Weakest preconditions as monads!

Pure: WIdX = ContP(X) = (X → P)→ P

Continuation monad with answer type P.

retW
Id

: X→WIdX bindW
Id

: WIdX→(X→WIdY)→WIdY

retW
Id
x Q = Q(x) bindW

Id
w1 w2 Q = w1(λx .w2(x)(Q))

Also monads:

Stateful: WSt X = (X × S → P)→ S → P

With exceptions: WExc X = (X + E → P)→ P

8Specification monads from monad transformers

Examples of predicate transformers monads:

Pure: WId : (X → P)→ P

Stateful: WSt : (X × S → P)→ S → P

With exceptions: WExc : (X + E → P)→ P

WId = T Id(ContP) T Id(M) =M
WSt = T St(ContP) T St(M) = S →M(−× S)

WExc = T Exc(ContP) T Exc(M) =M(−+ E)

Monad transformer T :

{
map a monad M to a monad TM
liftT :M→ TM

8Specification monads from monad transformers

Examples of predicate transformers monads:

Pure: WId : (X → P)→ P

Stateful: WSt : (X × S → P)→ S → P

With exceptions: WExc : (X + E → P)→ P

WId = T Id(ContP) T Id(M) =M
WSt = T St(ContP) T St(M) = S →M(−× S)

WExc = T Exc(ContP) T Exc(M) =M(−+ E)

Monad transformer T :

{
map a monad M to a monad TM
liftT :M→ TM

8Specification monads from monad transformers

Examples of predicate transformers monads:

Pure: WId : (X → P)→ P

Stateful: WSt : (X × S → P)→ S → P

With exceptions: WExc : (X + E → P)→ P

WId = T Id(ContP) T Id(M) =M
WSt = T St(ContP) T St(M) = S →M(−× S)

WExc = T Exc(ContP) T Exc(M) =M(−+ E)

Monad transformer T :

{
map a monad M to a monad TM
liftT :M→ TM

9Specification monads

Beside weakest precondition, other specification monads!

Weakest precondition: ContP X = (X → P)→ P

Strongest postcondition: StrPostX = P→ X → P

Pre/Postconditions: PrePostX = P× (X → P)

What’s in a specification monad W?

B specifications are partially ordered, e.g.

w1 ≤ContP X w2 ⇔ ∀post : X → P,w2 post =⇒ w1 post

B bindW is monotonic in both its arguments

; restriction to monotonic predicate transformers in ContP,StrPost

9Specification monads

Beside weakest precondition, other specification monads!

Weakest precondition: ContP X = (X → P)→ P

Strongest postcondition: StrPostX = P→ X → P

Pre/Postconditions: PrePostX = P× (X → P)

What’s in a specification monad W?

B specifications are partially ordered, e.g.

w1 ≤ContP X w2 ⇔ ∀post : X → P,w2 post =⇒ w1 post

B bindW is monotonic in both its arguments

; restriction to monotonic predicate transformers in ContP,StrPost

10Bridging the specification gap

M

θ−−−−−−−−→

W

An effect observation θ [Katsumata‘14] is a monad morphism
from a computational monad M to a specification monad W, i.e.

θ(retM v) = retW v θ(bindMm f) = bindW (θm) (θ ◦ f)

; An interpretation/semantics of programs as specifications.

10Bridging the specification gap

M θ−−−−−−−−→ W

An effect observation θ [Katsumata‘14]

is a monad morphism
from a computational monad M to a specification monad W, i.e.

θ(retM v) = retW v θ(bindMm f) = bindW (θm) (θ ◦ f)

; An interpretation/semantics of programs as specifications.

10Bridging the specification gap

M θ−−−−−−−−→ W

An effect observation θ [Katsumata‘14] is a monad morphism
from a computational monad M to a specification monad W, i.e.

θ(retM v) = retW v θ(bindMm f) = bindW (θm) (θ ◦ f)

; An interpretation/semantics of programs as specifications.

11Interpreting non-deterministic programs

Pfin X WId X = (X → P)→ P

θ∀

θ∀({v1, . . . , vn}) = λpost. post v1 ∧ . . . ∧ post vn

θ∃({v1, . . . , vn}) = λpost. post v1 ∨ . . . ∨ post vn

Demonic non-determinism θ∀

vs Angelic non-determinism θ∃

11Interpreting non-deterministic programs

Pfin X WId X = (X → P)→ P

θ∀

θ∃

θ∀({v1, . . . , vn}) = λpost. post v1 ∧ . . . ∧ post vn

θ∃({v1, . . . , vn}) = λpost. post v1 ∨ . . . ∨ post vn

Demonic non-determinism θ∀ vs Angelic non-determinism θ∃

12Input-Output and the History of events

WGlob X = (X × E? → P)→ E? → P

IOX

θGlob

E? : list of IO events

Global history specifications θGlob

vs Local history specifications θLoc

12Input-Output and the History of events

WGlob X = (X × E? → P)→ E? → P

IOX

WLoc X = (X × E? → P)→ P

θGlob

θLoc

E? : list of IO events

Global history specifications θGlob vs Local history specifications θLoc

13Contributions

I Specification monads:
specifications on the same footing as programs

I Effect observations provide great flexibility

� In the choice of the semantics
� In the complexity of the specifications
� Instances for state, exceptions, IO, non-determinism. . .

I Standard techniques for monads apply:

Monad Transformers

Presented at ICFP‘19 in Dijkstra Monads for All

Verification: Dijkstra Monads

14What is a Dijkstra monad?

M
computational monad

code

c :M A

W
specification monad

specification

wc : W A

Dijkstra monad [Swamy‘13]

c : DM A wc

retD
M

: (x : A)→ DM A (retW x)
m : DM A w1 f : (x : A)→ DM B w2(x)

bindD
M

m f : DM B (bindW w1 w2)

weakenD
M

: (w ≤W w ′)→ DM A w → DM A w ′

14What is a Dijkstra monad?

M
computational monad

code

c :M A

W
specification monad

specification

wc : W A

Dijkstra monad [Swamy‘13]

c : DM A wc

retD
M

: (x : A)→ DM A (retW x)
m : DM A w1 f : (x : A)→ DM B w2(x)

bindD
M

m f : DM B (bindW w1 w2)

weakenD
M

: (w ≤W w ′)→ DM A w → DM A w ′

14What is a Dijkstra monad?

M
computational monad

code

c :M A

W
specification monad

specification

wc : W A

Dijkstra monad [Swamy‘13]

c : DM A wc

retD
M

: (x : A)→ DM A (retW x)
m : DM A w1 f : (x : A)→ DM B w2(x)

bindD
M

m f : DM B (bindW w1 w2)

weakenD
M

: (w ≤W w ′)→ DM A w → DM A w ′

15F?, Dijkstra monads and Verification Conditions

val fibonacci : n:Z→ Pure Z (wfib n)

let rec fibonacci n =

if n = 0 ‖ n = 1

then 1

else fibonacci (n-1) + fibonacci (n-2)

I A few fixed Dijkstra monads:

Pure St Exc Div All

Can Dijkstra monads capture arbitrary monadic effects?

15F?, Dijkstra monads and Verification Conditions

val fibonacci : n:Z→ Pure Z (wfib n)

let rec fibonacci n =

if n = 0 ‖ n = 1

then ret 1

else

bind (fibonacci (n-1))

(λ n1 → bind (fibonacci (n-2))

(λ n2 → ret (n1 + n2)))

I A few fixed Dijkstra monads:

Pure St Exc Div All

Can Dijkstra monads capture arbitrary monadic effects?

15F?, Dijkstra monads and Verification Conditions

val fibonacci : n:Z→ Pure Z (wfib n)

let rec fibonacci n =

if n = 0 ‖ n = 1

then (ret 1 : Pure Z (ret 1))

else

(bind (fibonacci (n-1))

(λ n1 → bind (fibonacci (n-2))

(λ n2 → ret (n1 + n2)))

: Pure Z (bind (wfib (n-1)) (λ n1→
bind (wfib (n-2)) ...))

I A few fixed Dijkstra monads:

Pure St Exc Div All

Can Dijkstra monads capture arbitrary monadic effects?

15F?, Dijkstra monads and Verification Conditions

val fibonacci : n:Z→ Pure Z (wfib n)

let rec fibonacci n =

(if n = 0 ‖ n = 1

then ret 1

else

bind (fibonacci (n-1))

(λ n1 → bind (fibonacci (n-2))

(λ n2 → ret (n1 + n2))))

: Pure Z (if n = 0 ‖ n = 1 then ret 1

else bind (wfib (n-1)) ...)

I A few fixed Dijkstra monads:

Pure St Exc Div All

Can Dijkstra monads capture arbitrary monadic effects?

15F?, Dijkstra monads and Verification Conditions

val fibonacci : n:Z→ Pure Z (wfib n)

let rec fibonacci n =

(if n = 0 ‖ n = 1

then ret 1

else

bind (fibonacci (n-1))

(λ n1 → bind (fibonacci (n-2))

(λ n2 → ret (n1 + n2))))

: Pure Z (if n = 0 ‖ n = 1 then ret 1

else bind (wfib (n-1)) ...)

I A few fixed Dijkstra monads:

Pure St Exc Div All

Can Dijkstra monads capture arbitrary monadic effects?

16From effect observation to Dijkstra monad

M θ−−−−−−−−→ W

DM A (w : W A) =
{
m :MA | θ(m) ≤W w

}
Extends to a (categorical) equivalence

Dijkstra monads ∼= Effect observations
(W,D) θ :M→W

16From effect observation to Dijkstra monad

M θ−−−−−−−−→ W

DM A (w : W A) =
{
m :MA | θ(m) ≤W w

}

Extends to a (categorical) equivalence

Dijkstra monads ∼= Effect observations
(W,D) θ :M→W

16From effect observation to Dijkstra monad

M θ−−−−−−−−→ W

DM A (w : W A) =
{
m :MA | θ(m) ≤W w

}
Extends to a (categorical) equivalence

Dijkstra monads ∼= Effect observations
(W,D) θ :M→W

17Dijkstra monads from monad transformers

Id
ret−−−−−−−−−→ ContP

Associates a Dijkstra monad DT to any monad M = T (Id)

Monad transformers can be derived from monads

State C [X] = S → M(X × S)
Exceptions C [X] = M(X + E)
Monotonic State C [X] = (s0 : S)→ M(X × {s1 : S | s0 ≤ s1})

as long as they fit the following grammar:

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

17Dijkstra monads from monad transformers

Id
ret−−−−−−−−−→ ContP

θ : T (Id)
T (ret)−−−−−−−−→ T (ContP)

Associates a Dijkstra monad DT to any monad M = T (Id)

Monad transformers can be derived from monads

State C [X] = S → M(X × S)
Exceptions C [X] = M(X + E)
Monotonic State C [X] = (s0 : S)→ M(X × {s1 : S | s0 ≤ s1})

as long as they fit the following grammar:

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

17Dijkstra monads from monad transformers

Id
ret−−−−−−−−−→ ContP

θ : T (Id)
T (ret)−−−−−−−−→ T (ContP)

Associates a Dijkstra monad DT to any monad M = T (Id)

Monad transformers can be derived from monads

State C [X] = S → M(X × S)
Exceptions C [X] = M(X + E)
Monotonic State C [X] = (s0 : S)→ M(X × {s1 : S | s0 ≤ s1})

as long as they fit the following grammar:

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

18Contributions

I An algebraic definition of Dijkstra monads (6 equations)

I Dijkstra monads-Effect observations correspondence
; New examples of Dijkstra monads for non-determinism, IO

I Deriving monad transformers from a metalanguage

Presented at ICFP‘19 in Dijkstra Monads for All,

Towards Relational Verification

19What is relational verification?

Proving that 2 runs of a program,
or 2 different programs share a common specification.

Hyper-properties between multiple executions a single program

� Non-interference (NI)
Public outputs only depend on public inputs

� Differential Privacy

Relational properties between two distinct programs

� Program equivalence
Programs exhibit the same behaviours

� Refinements

� Relative cost analysis

20Relational program logics

I Relational Hoare Logic [Benton‘04]

` { p } c ∼ c ′ { q }

I Triples are derived using inference rules:

Seq
` { p } c1 ∼ c ′1 { q } ` { q } c2 ∼ c ′2 { r }

` { p } c1; c2 ∼ c ′1; c ′2 { r }

I Specific to state and non-termination

I Other relational logics for different effects
(e.g. (×)pRHL [Barthe et al.‘09-19] for probabilities)

20Relational program logics

I Relational Hoare Logic [Benton‘04]

` { p } c ∼ c ′ { q }

I Triples are derived using inference rules:

Seq
` { p } c1 ∼ c ′1 { q } ` { q } c2 ∼ c ′2 { r }

` { p } c1; c2 ∼ c ′1; c ′2 { r }

I Specific to state and non-termination

I Other relational logics for different effects
(e.g. (×)pRHL [Barthe et al.‘09-19] for probabilities)

20Relational program logics

I Relational Hoare Logic [Benton‘04]

` { p } c ∼ c ′ { q }

I Triples are derived using inference rules:

Seq
` { p } c1 ∼ c ′1 { q } ` { q } c2 ∼ c ′2 { r }

` { p } c1; c2 ∼ c ′1; c ′2 { r }

I Specific to state and non-termination

I Other relational logics for different effects
(e.g. (×)pRHL [Barthe et al.‘09-19] for probabilities)

21From unary to relational setting

Unary setting:

M θ−−−−−−−−→ W

Relational setting:

M1,M2
θ
rel

−−−−−−−−−→ Wrel

In the most general case, specifying and verifying

� 2 distinct programs,

� with different effects,

� at potentially unrelated types.

22Reconstructing relational program logics

M1,M2
θ
rel

−−−−−−−−−→ Wrel

Relational judgements:

` c1 ∼ c2 { w }

c1 :M1 A1, c2 :M2 A2, w : Wrel(A1,A2).

�θ
rel

c1 ∼ c2 { w } ⇐⇒ θ
rel

(c1, c2) ≤Wrel w

Three groups of inference rules for deriving relational judgements:

� logical rules (inherited from the metatheory)

� generic monadic rules

� effect specific rules

22Reconstructing relational program logics

M1,M2
θ
rel

−−−−−−−−−→ Wrel

Relational judgements:

` c1 ∼ c2 { w }

c1 :M1 A1, c2 :M2 A2, w : Wrel(A1,A2).

�θ
rel

c1 ∼ c2 { w } ⇐⇒ θ
rel

(c1, c2) ≤Wrel w

Three groups of inference rules for deriving relational judgements:

� logical rules (inherited from the metatheory)

� generic monadic rules

� effect specific rules

23Generic monadic rules

Ret
a1 : A1 a2 : A2

` retM1 a1 ∼ retM2 a2
{
ret

Wrel (a1, a2)
}

Weaken
` c1 ∼ c2 { w } w ≤ w ′

` c1 ∼ c2
{
w ′
}

Bind

` m1 ∼ m2 { wm }
∀a1, a2 ` f1 a1 ∼ f2 a2

{
w f (a1, a2)

}
` bindM1 m1 f1 ∼ bindM2 m2 f2

{
bind

Wrel wm w f
}

24Relational Specification Monads

Provides a type of relational specifications for two result types A1,A2

WSt
rel(A1,A2) = ((A1 × S1)× (A2 × S2)→ P)︸ ︷︷ ︸

post-relation

−→ S1 × S2 → P︸ ︷︷ ︸
pre-relation

WSt
rel : Type× Type −→ Type

With operations induced by the continuation monad to P

ret
WSt

rel : A1 × A2 −→WSt
rel (A1,A2)

bind
WSt

rel : (A1 × A2 →WSt
rel (B1,B2)) −→
WSt

rel (A1,A2)→WSt
rel (B1,B2)

24Relational Specification Monads

Provides a type of relational specifications for two result types A1,A2

WSt
rel(A1,A2) = ((A1 × S1)× (A2 × S2)→ P)︸ ︷︷ ︸

post-relation

−→ S1 × S2 → P︸ ︷︷ ︸
pre-relation

WSt
rel : Type× Type −→ Type

With operations induced by the continuation monad to P

ret
WSt

rel : A1 × A2 −→WSt
rel (A1,A2)

bind
WSt

rel : (A1 × A2 →WSt
rel (B1,B2)) −→
WSt

rel (A1,A2)→WSt
rel (B1,B2)

24Relational Specification Monads

Provides a type of relational specifications for two result types A1,A2

WSt
rel(A1,A2) = ((A1 × S1)× (A2 × S2)→ P)︸ ︷︷ ︸

post-relation

−→ S1 × S2 → P︸ ︷︷ ︸
pre-relation

WSt
rel : Type× Type −→ Type

With operations induced by the continuation monad to P

ret
WSt

rel : A1 × A2 −→WSt
rel (A1,A2)

bind
WSt

rel : (A1 × A2 →WSt
rel (B1,B2)) −→
WSt

rel (A1,A2)→WSt
rel (B1,B2)

24Relational Specification Monads

Provides a type of relational specifications for two result types A1,A2

WSt
rel(A1,A2) = ((A1 × S1)× (A2 × S2)→ P)︸ ︷︷ ︸

post-relation

−→ S1 × S2 → P︸ ︷︷ ︸
pre-relation

WSt
rel : Type× Type −→ Ord

With operations induced by the continuation monad to P

ret
WSt

rel : A1 × A2 −→WSt
rel (A1,A2)

bind
WSt

rel : (A1 × A2 →WSt
rel (B1,B2)) −→
WSt

rel (A1,A2)→WSt
rel (B1,B2)

25Relational Effect Observations

Observing stateful programs:

θSt : St1 A1 × St2 A2 −→ WSt
rel(A1,A2)

θSt(c1, c2) = λpost (s1, s2). post (c1 s1, c2 s2)

θSt respects returns and binds

` get () ∼ ret a2
{
θSt(get (), ret a2)

}
θSt(get (), ret a2) = λpost (s1, s2). post ((s1, s1), (a2, s2))

Also Relational effect observations for:
Non-determinism, Exception, IO, Probabilities. . .

25Relational Effect Observations

Observing stateful programs:

θSt : St1 A1 × St2 A2 −→ WSt
rel(A1,A2)

θSt(c1, c2) = λpost (s1, s2). post (c1 s1, c2 s2)

θSt respects returns and binds

` get () ∼ ret a2
{
θSt(get (), ret a2)

}
θSt(get (), ret a2) = λpost (s1, s2). post ((s1, s1), (a2, s2))

Also Relational effect observations for:
Non-determinism, Exception, IO, Probabilities. . .

25Relational Effect Observations

Observing stateful programs:

θSt : St1 A1 × St2 A2 −→ WSt
rel(A1,A2)

θSt(c1, c2) = λpost (s1, s2). post (c1 s1, c2 s2)

θSt respects returns and binds

` get () ∼ ret a2
{
θSt(get (), ret a2)

}
θSt(get (), ret a2) = λpost (s1, s2). post ((s1, s1), (a2, s2))

Also Relational effect observations for:
Non-determinism, Exception, IO, Probabilities. . .

26The problem with exceptions. . .

WExc
rel (A1,A2) = ((A1 + E1)× (A2 + E2)→ P)→ P

26The problem with exceptions. . .

WExc
rel (A1,A2) = ((A1 + E1)× (A2 + E2)→ P)→ P

let bindWrelExc wm wf post =

wm (λ x→
match x with

| Inl a1, Inl a2 → wf (a1,a2) post

| Inr e1, Inr e2 → post (Inr e1, Inr e2)

| → ??)

wm : WExc
rel (A1,A2) wf : A1 × A2 →WExc

rel (B1,B2)

26The problem with exceptions. . .

WExc
rel (A1,A2) = ((A1 + E1)× (A2 + E2)→ P)→ P

let bindWrelExc wm (wf1 , wf2 , wf) post =

wm (λ x→
match x with

| Inl a1, Inl a2 → wf (a1,a2) post

| Inr e1, Inr e2 → post (Inr e1, Inr e2)

| Inl a1, Inr e2 → wf1 a1 (λ y1 → post (y1, Inr e2))

| Inr e2, Inl a2 → wf2 a2 (λ y2 → post (Inr e1, y2)))

wf1 : A1 →WExcB1 wf2 : A2 →WExcB2

wf : A1 × A2 →WExc
rel (B1,B2)

27Reconstructing relational program logics (reloaded)

WExc
rel (A1,A2) = ((A1 + E1)× (A2 + E2)→ P)→ P

Refined Judgements ` c1 {w1} ∼ c2 {w2} | wrel

` m1 {wm
1 } ∼ m2 {wm

2 } | wm
rel

∀a1, a2 ` f1 a1 {w f
1 a1} ∼ f2 a2 {wm

2 a2} | w f
rel a1 a2

`
bindExc1 m1 f1 {bindWExc

1 wm
1 w f

1 }
∼

bindExc2 m2 f2 {bindWExc
2 wm

2 w f
2 }

∣∣∣∣∣∣ bindWExc
rel wm w f

27Reconstructing relational program logics (reloaded)

WExc
rel (A1,A2) = ((A1 + E1)× (A2 + E2)→ P)→ P

Refined Judgements ` c1 {w1} ∼ c2 {w2} | wrel

` m1 {wm
1 } ∼ m2 {wm

2 } | wm
rel

∀a1, a2 ` f1 a1 {w f
1 a1} ∼ f2 a2 {wm

2 a2} | w f
rel a1 a2

`
bindExc1 m1 f1 {bindWExc

1 wm
1 w f

1 }
∼

bindExc2 m2 f2 {bindWExc
2 wm

2 w f
2 }

∣∣∣∣∣∣ bindWExc
rel wm w f

28Contributions

I An extension of specification monads and effect observation
to relational verification

I A generic framework for deriving relational program logics for
arbitrary monadic effects

I A new insight on relational programs logics with exceptions

Accepted at POPL‘20 as The Next 700 Relational Program Logics

A Unifying Categorical Framework

29Relative monads & morphisms

A relative monad [Altenkirch et al.‘15] on a functor J : I → C is

� a functor T : I → C,

� equipped with operations (a, b ∈ I) and equations

retTa ∈ C(J a, T a) bindTa,b : C(J a, T b)→ C(T a, T b)

Relative monad morphism θ
rel

from T1 to T2 over F : J1→J2

C1

I

C2

F

J1

J2

�

C1

I

C2

F

T1

T2

⇓ θrel

respecting ret and bind.

29Relative monads & morphisms

A relative monad [Altenkirch et al.‘15] on a functor J : I → C is

� a functor T : I → C,

� equipped with operations (a, b ∈ I) and equations

retTa ∈ C(J a, T a) bindTa,b : C(J a, T b)→ C(T a, T b)

Relative monad morphism θ
rel

from T1 to T2 over F : J1→J2

C1

I

C2

F

J1

J2

�

C1

I

C2

F

T1

T2

⇓ θrel

respecting ret and bind.

30Concrete instances

A specification monad is a relative monad over

Discr : Type −→ Ord

A relational specification monad is a relative monad over

J× :
Type× Type −→ Ord

(A1,A2) 7−→ Discr(A1 × A2)

WExc
rel is a Jrel-relative monad where

Jrel :

Type× Type −→ Span(Ord)

(A1,A2) 7−→
Discr(A1 × A2)

DiscrA1 DiscrA2

31Enrichment

For a specification monad W

bindWA,B : Ord(DiscrA,WB) −→ Ord(WA,WB)

bind monotonic ⇐⇒ bind lifts to Ord-enriched categories

What if we want to preserve another structure, e.g. measurability?

; Enriched relative monads

A relative variant of The Formal Theory of Monads [Street‘72]

31Enrichment

For a specification monad W

bindWA,B : Ord(DiscrA,WB) −→ Ord(WA,WB)

bind monotonic ⇐⇒ bind lifts to Ord-enriched categories

What if we want to preserve another structure, e.g. measurability?

; Enriched relative monads

A relative variant of The Formal Theory of Monads [Street‘72]

31Enrichment

For a specification monad W

bindWA,B : Ord(DiscrA,WB) −→ Ord(WA,WB)

bind monotonic ⇐⇒ bind lifts to Ord-enriched categories

What if we want to preserve another structure, e.g. measurability?

; Enriched relative monads

A relative variant of The Formal Theory of Monads [Street‘72]

31Enrichment

For a specification monad W

bindWA,B : Ord(DiscrA,WB) −→ Ord(WA,WB)

bind monotonic ⇐⇒ bind lifts to Ord-enriched categories

What if we want to preserve another structure, e.g. measurability?

; Enriched relative monads

A relative variant of The Formal Theory of Monads [Street‘72]

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

⇓

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

⇓ F G

R

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

⇓ ⇓ ∃F G

R

∃F∗RG∗

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

32Relative monads synthetically

Use framed bicategories to abstract over hom-distributors

⇓ ⇓ ∃F G

R

∃F∗RG∗

and string diagrams to works with these abstract objects.

ret JT

T ∗C CJ ∗

T ∗C CT ∗
bind

33Contributions

I Extending Relative monad
morphisms over distinct base
functors

I A formal theory of relative
monads in framed
bicategories

I Conservativity over the
classic formal theory of
monads

θαm2

bind
m1

j∗m∗1

= α

retm2

m2

bind
m1

j∗m∗1

= α
m2

α

retm2 j∗m∗1

α

retm2 j∗m∗1

α
m2

bind

retm2

=

α

retm2 j∗m∗1

bind
m2

α

retm2

=

j∗m∗1

bind

m2

θα

θα m1

=

m1

m1

m1

String diagrams at work

34Summary

� Specifications for arbitrary monadic effects through monads

� Effect observations decouple program syntax from multiple
semantics

� Enables a generic reconstruction of Dijkstra monads and
relational program logics

Contributions:

; Introduction of specification monads and their transformers

; Connecting Dijkstra monads to effect observations

; And extending to the relational setting

Implemented in Coq

; A synthetic theory of relative monads in framed bicategories

35Discrete Probabilities

Computational monad:

� Giry monad: formal barycentric sums (finite distributions)

� Distributions

Specification monads

Unary WProb(X) = (X→I)
mon,cont−−−−−→ I

Relational WProb(A1,A2) = (A1 × A2→I)
mon,cont−−−−−→ I

Relational Effect Observation

θProb(c1, c2) = λpost. inf
d∼c1,c2

∑
a1:A1,a2:A2

d(a1, a2) · post(a1, a2)

36A DSL for monad transformers

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

t ::= ret | bind | 〈t1, t2〉 | πi t | x | λx . t | t1 t2 | λ�x . t | t u

Observation 1: if C and M are monads, T C (M) = C [M/M] is a
monad

Observation 2: T C (M) = C [M/M] comes with an M-algebra
structure α

lift : M M(retT
C (M))−−−−−−−−−→M(T C (M))

α−−−−→ T C (M)

36A DSL for monad transformers

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

t ::= ret | bind | 〈t1, t2〉 | πi t | x | λx . t | t1 t2 | λ�x . t | t u

Observation 1: if C and M are monads, T C (M) = C [M/M] is a
monad

Observation 2: T C (M) = C [M/M] comes with an M-algebra
structure α

lift : M M(retT
C (M))−−−−−−−−−→M(T C (M))

α−−−−→ T C (M)

36A DSL for monad transformers

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

t ::= ret | bind | 〈t1, t2〉 | πi t | x | λx . t | t1 t2 | λ�x . t | t u

Observation 1: if C and M are monads, T C (M) = C [M/M] is a
monad

Observation 2: T C (M) = C [M/M] comes with an M-algebra
structure α

lift : M M(retT
C (M))−−−−−−−−−→M(T C (M))

α−−−−→ T C (M)

36A DSL for monad transformers

C ::= MA | C1 × C2 | (x : A)→ C | C1 → C2 A ∈ TypeL

t ::= ret | bind | 〈t1, t2〉 | πi t | x | λx . t | t1 t2 | λ�x . t | t u

Observation 1: if C and M are monads, T C (M) = C [M/M] is a
monad

Observation 2: T C (M) = C [M/M] comes with an M-algebra
structure α

lift : M M(retT
C (M))−−−−−−−−−→M(T C (M))

α−−−−→ T C (M)

37Logical rules

B-Elim
if b then ` c1 ∼ c2

{
w>

}
else ` c1 ∼ c2

{
w⊥

}
` c1 ∼ c2

{
if b then w> else w⊥

}
N-Elim

n : N w = elimN w0 wsuc ` c1[0/n] ∼ c2[0/n] { w0 }
∀n : N, ` c1 ∼ c2 { w n } ⇒ ` c1[S n/n] ∼ c2[S n/n] { wsuc (w n) }

` c1 ∼ c2 { w n }

� Independent from the effects and the observation θ
rel

I Use the ambient metatheory (e.g. Coq)

� Validated by dependent pattern matching

	Motivation
	Specifying Monadic Programs
	Verification: Dijkstra Monads
	Towards Relational Verification
	A Unifying Categorical Framework

