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1Proof Assistants ?

A software/programming language to:

▶ Specify theorems,

▶ Write proofs,

▶ Check mechanically the correctness of theses proofs.



2Proof Assistants at Work

CompCert Marton’s “Polynomial
Freiman-Ruzsa conjecture”

OS Microkernel

4 color theoreom

Sphere eversion

Challenges: Correctness, Expressivity, Usability, Scalability, Inter-operability, Efficiency



3Dependent Types 101

Demo ?



4Martin-Löf Type Theory and its Implementations

Martin-Löf logical framework + type formers (Type,Π,Σ, IdAx y , . . .)

Γ ⊢ Γ ⊢ A Γ ⊢ A ≡ B

Γ ⊢ t : A Γ ⊢ t ≡ u : A

▶ Idealized metatheory of proofs assistants based on dependent types.

▶ Practical implementation ∼ algorithms deciding each judgements



4Martin-Löf Type Theory and its Implementations

Martin-Löf logical framework + type formers (Type,Π,Σ, IdAx y , . . .)

Γ ⊢ Γ ⊢ A Γ ⊢ A ≡ B

Γ ⊢ t : A Γ ⊢ t ≡ u : A

App
Γ ⊢ t : (x : A) → B Γ ⊢ u : A

Γ ⊢ t u : B[x := u]

Lam
Γ, x : A ⊢ t : B

Γ ⊢ λx : A.t : (x : A) → B

Conv
Γ ⊢ t : A Γ ⊢ A ∼= B

Γ ⊢ t : B

Beta
Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λx : A.t) u ∼= t[x := u] : B[x := u]



5Formalized Metatheory of Type Theory: Why ?

Logical aspects

▶ Relative consistency

▶ Normalization/Canonicity

▶ Proof-theoretical bounds

Certification aspects

▶ Correctness, completeness and totality of the implemented algorithms



6Formalized Metatheory of Type Theory: State of the art

MetaCoq

Normalization oracle

Logical relations for MLTT

Rely on Induction-Recursion Rely on Impredicativity



MetaCoq



7The implementation of Coq (Idealised)

PCUIC
Polymorphic Cumulative calculus

of Inductive Constructions

200 kLoc of Ocaml

18 kLoc
≈1 critical bug/year
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8Representing Coq in Coq: Template-Coq

Reflection

Reification
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8Representing Coq in Coq: Template-Coq

Reflection

Reification



9Metatheorems and Results from MetaCoq

Metatheorems

▶ Confluence of reduction

▶ Injectivity of type formers

▶ Subject reduction

▶ Principality wrt. cumulativity

Assumes normalization as an oracle !

Products

▶ Verified type-checker and conversion checker

▶ That can be extracted to Ocaml

▶ Verified extraction to ocaml/malfunction
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Martin-Löf à la Coq: Mechanized Logical Relation in Coq for MLTT
j.w.w. A. Adjedj, M. Lennon-Bertrand, P.-M. Pédrot, L. Pujet



10Main goal & Hauptsatz

Informally: Normalization of Coq in Coq

Theorem :Typing and conversion are decidable for MLTT

with 1 universe

wrt the theory of Coq

with 1 + 5 universes

.

MLTT with Π, Σ, 0, 1, N, List The theory of Coq: PCUIC

Current gap: indexed inductive types and a hierarchy of universes.
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11Towards decidability

Declarative typing

▶ Free standing conversion rule

Γ ⊢de t : A Γ ⊢de A ∼= B

Γ ⊢de t : B

▶ Conversion mixes arbitrary uses of congruence, computation (β), extensionality
and transitivity steps.

Algorithmic typing (bidirectional)

▶ Conversion constrained to phase changes

Γ ⊢al t ▷ A Γ ⊢al A ∼= B

Γ ⊢al t ◁ B

▶ Conversion guided by the terms: alternating weak-head reduction and syntax
directed congruences/extensionality rules
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12Bridging the gap between declarative and algorithmic

How can we compare the two presentations of MLTT?

Algorithmic → Declarative: Admissibility of algorithmic rules ✓

Declarative → Algorithmic: Need to show that every derivation has a canonical form
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13Logical Relations, formally in Coq

Key Idea:

▶ Attach to every type a notion of reduction to a canonical form Γ ⊩ A

▶ Use witnesses [A] : Γ ⊩ A to define a similar notion Γ ⊩ t : A/[A] for terms of type
A

▶ Show that the definition enjoy many stability properties

Fundamental lemma: Mutual induction on the judgements, using all the derived
properties

Γ ⊢de A =⇒ Γ ⊩ A

Γ ⊢de t : A =⇒ [A] : Γ ⊩ A ∧ Γ ⊩ t : A/[A]

Formal development: ∼ 10k loc (4k specs/6k proofs); overall development ∼ 25k loc



Beyond MLTT



14Extending MLTT: Why would we care ?

Add new proof principles:

▶ Uniqueness of identity proofs (UIP)

▶ Function extensionality (funext)

▶ Negation of funext

▶ Quotients

▶ Univalence principle

▶ Markov principle

▶ Parametricity

▶ Church Thesis

Account for existing programming features:

▶ Subtyping

▶ Exceptions

▶ Read access to a global environment

▶ Dynamic type

▶ Non-determinism (?)

▶ Probabilistic choices (?)



15Functorial structure on List

The type former List : Type → Type can be endowed with a

map : (A → B) → ListA → ListB

map f [] = []
map f (hd :: tl) = f hd :: map f tl

Functor laws:

map id ≡ id map f ◦ map g ≡ map (f ◦ g)

Not validated on neutrals !

A : Type, l : ListA ̸⊢ map idA l ≡ l : ListA
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16Functor laws for lists, Mechanized !

▶ Extend MLTT with functor laws on List

▶ Add reduction rules for map composition

map f (map g l) ; map (f ◦ g) l for neutral l

▶ Extend the logical relation with equations on neutrals

Γ ⊢ f ≡ idA : A → A Γ ⊢ l ≡ l ′ : ListA l , l ′ neutrals

Γ ⊢ map f l ≡ l ′ : ListA

▶ Mechanized: Consistency, Canonicity, Decidability of conversion and type-checking

A Functorial Type Theory MLTTmap

MLTT+ map for List,Π,Σ, W, Id + functor laws
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17Application: Structural Coercive and Subsumptive subtyping

Sub
Γ ⊢sub t : A Γ ⊢sub A ≼

Γ ⊢sub t : A′

Coe
Γ ⊢coe t : A Γ ⊢coe A ≼ A′

Γ ⊢coe coeA,A′ t : A′

Structural coercions:
coeListA,ListB l ; map coeA,B l

Equations validated by MLTTsub:

Γ ⊢coecoeA,A t ≡ t : A Γ ⊢coe coeB,C (coeA,B t) ≡ coeA,C t : C

MLTT

MLTTsub MLTTcoe MLTTmap∼
| · | J·K
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18Current limitations and future steps

Logrel-Coq

▶ Currently, only one universe

▶ A branch with List and functor laws

▶ Missing some (co)inductives: W, Id, M wanted !
Add a scheme for cumulative indexed-inductives ?

▶ Some performance issues to tackle.

A playground for experimentations on type theories
and their normalization

Validate Coq’s guard condition, add extensionality principle for booleans, . . .
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19Models from the literature

Reflexive graphs model: external parametricity [Atkey et al.]
Types equipped with a reflexive relation

Setoid model: UIP, funext [Altenkirch et al.]
Types equipped with an irrelevant equivalence relation

Exceptional model: Exceptions [Pédrot et al.]
Pointed types

Reader model: Reading and setting a global cell [Boulier et al.]
Presheaves on a set of states



Formalizing Logical Relations for MLTT



20A logical relation for iterated whnf

A (proof-relevant) predicate

Γ ⊩ A

characterizing types by their
weak head normal form.

For [A] : Γ ⊩ A, 3 predicates:

Γ ⊩[A]A ∼= B

Γ ⊩[A]t : A

Γ ⊩[A]t ∼= u : A

Using small-induction recursion [Hancock et al.] in Coq.
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21Properties of the logical relation

▶ Escape: if Γ ⊩[A] t : A then Γ ⊢ t : A

▶ Irrelevance (including universe level)

▶ Equivalence: reflexivity, symmetry, transitivity

▶ Neutral reflection

▶ Closure by anti-reduction

Fundamental lemma: if Γ ⊢de t : A then [A] : Γ ⊩ A and Γ ⊩[A] t : A

Corollary: if Γ ⊢de t : A then Γ ⊢ t : A



21Properties of the logical relation

▶ Escape: if Γ ⊩[A] t : A then Γ ⊢ t : A

▶ Irrelevance (including universe level)

▶ Equivalence: reflexivity, symmetry, transitivity

▶ Neutral reflection

▶ Closure by anti-reduction

Fundamental lemma: if Γ ⊢de t : A then [A] : Γ ⊩ A and Γ ⊩[A] t : A

Corollary: if Γ ⊢de t : A then Γ ⊢ t : A



21Properties of the logical relation

▶ Escape: if Γ ⊩[A] t : A then Γ ⊢ t : A

▶ Irrelevance (including universe level)

▶ Equivalence: reflexivity, symmetry, transitivity

▶ Neutral reflection

▶ Closure by anti-reduction

Fundamental lemma: if Γ ⊢de t : A then [A] : Γ ⊩ A and Γ ⊩[A] t : A

Corollary: if Γ ⊢de t : A then Γ ⊢ t : A



21Properties of the logical relation

▶ Escape: if Γ ⊩[A] t : A then Γ ⊢gen t : A
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223 logical relations in 1

Generic Typing

Logical Relation

Declarative Mixed Algorithmic{



23Engineering aspects

Code: 20k loc (9k spec; 11k proofs)

The formalization rely on

▶ autosubst2 for generating renaming, substitution and their lemmas

▶ Equations

▶ partialfun (T. Winterhalter) for defining the typechecking algorithm and
reasoning on it

Tactics:

▶ for discharging typing goals (eauto with typing lemmas)

▶ in order to dispatch the many forms of irrelevance

▶ for instantiating the logical relation with valid substitutions


	[height=2.5cm]LOGOMETACOQ.png MetaCoq [height=4cm]metacoqTeam.png
	Martin-Löf à la Coq: Mechanized Logical Relation in Coq for MLTT  j.w.w. A. Adjedj, M. Lennon-Bertrand, P.-M. Pédrot, L. Pujet
	Beyond MLTT
	Formalizing Logical Relations for MLTT

